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Abstract 

After a review of several methods designed to produce equivariant cohomology classes, we apply 
one introduced by Berline et al. (1992) to get a family of representatives of the universal Thorn class 
of a vector bundle. Surprisingly, this family does not contain the representative given by Mathai’ 
and Quillen (1986). However, it contains the particularly simple and symmetric representative of 
Harvey and Lawson (1993). 0 1998 Elsevier Science B.V. 
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1. Introduction 

In a recent paper [STW94] it has been shown how equivariant cohomology is related to the 
so-called (cohomological) topological models [B192,BS88,BS91 ,OSB89.W88,WBSSS]. In 
the same work, a way to compute some representatives of equivariant cohomology classes 
(i.e. observables of the corresponding topological model) was exhibited. 

Here, we shall use this method in order to generate a family of representatives of the 
Thorn class of a vector bundle depending on two arbitrary functions. As we shall see, these 
representatives are quite different from the MathaK-Quillen representative. They offer a 
good deal of flexibility at the price of being slightly complicated. Special choices allow to 
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find a very special representative with remarkable symmetry properties. However, its slow 
decrease at infinity makes it necessary to consider a cohomology theory with coefficients 
with sufficiently fast decrease (instead of compact). Some of these representatives (in par- 
ticular the most symmetric one) already appeared in a quite different framework in the work 
of Harvey and Lawson [HL93] on singular connections, a fact we learned after this work 
was completed. 

This work is divided into three parts. In Section 2 we recall basic facts about equivariant 
cohomology as well as the way to compute representatives of equivariant cohomology 
classes. This section parallels the explanations given in [STW94]. Section 3 is devoted to 
the MathaY-Quillen representative of the Thorn class. Finally, Section 4 exhibits a large 
family of representatives of the Thorn class. 

2. Equivariant cohomology 

Let us consider the following setting: M is a smooth manifold and g a connected Lie 
group acting smoothly on M. We would like to define a cohomology of the quotient space 
M/G which coincides with the De Rham cohomology when this quotient is a smooth 
manifold but which also exists when it is not, i.e. when 6 acts with fixed points. Equivariant 
cohomology solves this problem. 

Let M be a smooth manifold and a*(M) the exterior algebra of differential forms 
on M endowed with the differential dM. A Lie group G is assumed to be acting on M 
as well as its Lie algebra, denoted Lie G. For any h E Lie G there is a vector field h,&j 
representing the infinitesimal action of h on M. This vector field hM is usually called 
the fundamental vector field associated with h. We shall denote by iM (h) = i,+t (I.M) and 
1~ (A) = /M (h&t) = [dM, iM (A)]+ the contraction (or inner derivative) and Lie derivative 
acting on fi* (M). Let us recall that iM (J.) takes n-forms into (n - I)-forms while /M(h) 
acts on forms without changing the degree. Elements of Q*(M) which are annihilated by 
both i&t(h) and lM((h), for any k E Lie G, are the so-called basic elements of L?*(M) for 
the action of 9. As dM maps basic elements into basic elements, this leads to the definition 
of the basic cohomology of M for the action of G [(IO]. 

We now consider the Weil algebra W(G) of Lie G. * It is a graded differential algebra 
generated by two Lie G-valued indeterminates, the “connection” w, of degree 1, and its 
“curvature” a, of degree 2, such that 

a =dwo+ ;[w,w], (1) 

where dw is the differential of W(G). Of course, one has the Bianchi identity 

dwR + [w, L’] = 0. (2) 

There is an action iw(h), lw(h) for k E Lie 4: 

‘This is a harmless abuse of notation, but it is to be remembered that equivariant cohomology deals only 
with the local structure of 8. 
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iM;(h)w = h, I)Q(A)w = -[A, WI. (3) 

ipv(h)L? = 0, l,(A)Q = -[A, Q]. (4) 

For instance, w may be a connection on a principal G-bundle f7 and Q its curvature. In that 
case iw(h) and /w(k) are generated by the action of G on I7. and in this case WCC;) will 
be referred to as M;n. 

We now consider the graded differential algebra (Q*(,w) @ W(G). (1,~ +.dw). on which 
the operations (in +iw)(h) and (pi + pw)(h) for any h E Lies are well-defined. There 
common kernel is a graded differential subalgebra of fi*(,M) @ W(G). By definition, 
the so-called equivariant cochains are the elements of this subalgebra annihilated by the 
differential d,~ + dw, leading to the equivariant cohomology of Jb't for the action of G: this 
is the so-called Weil model for equivariant cohomology. 

Equivariant cohomology can be alternatively described in the so-called intermcdiote 
model. which was introduced in [K93] and which will be repeatedly used in the sequel. It 
is obtained from the Weil model via the following algebra isomorphism: ’ 

.r w exp{ -i,q (h)]x (5) 

for any x E Q*(M) @ W(G). This isomorphism changes the original differential and 
operations on G’*(M) ~3 W(G) by conjugation: 

dM+dW--fDint=dM+dW+I.M(W)-i,M(n), 
(in + iw)(h) - iw(k) = eCi.M(‘)(i,w + iw)(h)ei-u(h’. 

(/M +/w)(h) ---+ (1,~ +/w)(h) = e-i.h,(‘)(lJu + 1w)(k)e’,‘“‘(‘). 

(6) 

(7) 

(8) 

Finally, the so-called Cur-tan model is obtained from the intermediate model by putting 
w = 0 so that Dfnt Iw=o vanishes when restricted to invariant cochains. This is the most 
popular model, although many calculations are better automatized in the intermediate model. 

Another item which will be repeatedly used is “Cartan’s Theorem 3” [C50]: let us as- 
sume that (R*(M), d,u, in, 1~) admits a S-connection H ‘, with curvature (5). Then any 
equivariant cohomology class of 0*(M) @ W(G) with representative P(w, 52) gives rise 
canonically to a basic cohomology class of Q(M) with representative P(H, (_). There is a 
simple proof using the homotopy that expresses the triviality of the cohomology of the Weil 
algebra [MSZSS]. It follows from the construction that the cohomology class of P (0. C-J) 
does not depend on 0. 

One convenient way to produce equivariant cohomology classes is as follows [BGVC) I 1: 
we consider a H-bundle P(M, H) over M on which there exists an action of S which 
lifts the action of 6 on M. In general, the Lie group H has nothing to do with the Lie 
group 4. As before, P(M, H) is endowed with a differential dp. a contraction i,p and a 
Lie derivative 1~. 

3 See 1 DV93 I for a more general theorem. 
‘that is to say a LieG-valued I-form on M such that i,u(A)H = I and /,wO;)H = - IA. fil for any 

A E LieG. 
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Next, let f be a G-invariant H-connection on P(M, H): 

Ip(h)r = 0, foranyh E LieG. (9) 

The pull-back f of r on O*(M) @ W(G) is a l-form on P(M, H) and a O-form in 
W(G). It follows that 

iw(k)P = 0 (10) 

for any h E LieG. 
In Q*(M) 8 W(G), the equivariant curvature of F is defined by 

Rrz(Z+, 0, 0) = DiniF + $[f, P], (11) 

where Dint = dw + dp + lp(w) - ip (~2). Then, if ZH is a symmetric invariant polynomial 
on Lie H, we consider the H-characteristic class Z~~i,(~, w, Sz) = ZH(R~,,,,(?‘, w, G)). 
It is defined on M and fulfills 

(dw + diz/l f/M(W) - iM(a)) J~int(~’ W, fi) = 0, (12) 
iw(h) Zzint(f, w, Q) = 0, (13) 

(‘W + ‘I) Z~int(~’ w, 52) = O (14) 

for any h E LieG. 
In the Weil model, the equivariant curvature is defined by 

Rz(f, 0, Q) = (dw + dp)f + $[f + ip(lJ)?, f + ip(Q)f]. (15) 

We may similarly consider 
A 

Z;;w(ZY w, 52) = Zff(Rz,w(i., w, 52)) = e-‘“(h)Z~int(j., w, 52), 

which fulfills 

(16) 

^ 
(dw + dM> ZzW(f, w, 52) = 0, 

^ 
(17) 

(18) 

(19) 

for any h E LieG. 
Finally, if M admits a !&connection 8 with curvature 0, we can apply “Cartan’s Theorem 

3”, and substitute 0 and 0 instead of o and L2 in ZLyw(f, o, a), so that 

dM Zz,(F, 8, 0) = 0, 

iM(h) ZHyw(p.’ 6, 0) = 0, 

Zm(h) Z~,(Z+, 0,O) =o 

for any h E Lie G. 

(20) 

(21) 

(22) 

By standard arguments, these cohomology classes do not depend either on p or on 0. 
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3. Thorn class of a vector bundles: The Matha’i-Quillen strategy [MQ86] 

33 

Let V be a real oriented Euclidean vector space of dimension II = 2d with scalar product 
( , ) v . On V. we choose a canonical basis (ek ) orthonormal with respect to ( , ) v : 

(e;. ej)v = 6ij. 

Any vector on V can be decomposed as 

(23) 

V = Ukek. (24) 

Such a decomposition gives a coordinates system (vk) on V, turning V into a manifold. Due 
to the linear space structure of V, only G L (n, R) transformations define allowed coordinate 
changes. The group of isometries of V, with respect to ( , )v, is SO(n) c GL(n, R), with 
Lie algebra so(n) and Weil algebra W(SO(n)). Finally, we endow V and W(SO(n)) with 
the standard differential operations dv , iv , IV, dw, iw and 1~. 

Now, let E(M, V) be a vector bundle over a smooth manifold M with typical fiber V, 
equipped with differential operations: dE, iE and lE,. We denote Q:,,(E) the space of 
n-forms on E whose restriction to each fiber of E is rapidly decreasing. The corresponding 
cohomology space is written IY,“~,(E). The Thorn Class of E is the element T(E) of 
H:du (E) such that 

s 
T(E) = 1. (25) 

V 

which means that integration of T(E) along the fiber produces the constant function 1 on 
M. 

Actually, following Mathai’and Quillen [MQ86], we would like to exhibit a representative 
of T(E) in the form of an integral representation. Then, we consider V*, the dual space of 
V, equipped with the scalar product ( , ) v*, dual to ( , ) v on V. Moreover, we introduce 
coordinates (mk) for the Grassmann algebra AV* of V* together with the differential 
operations 6, I and L, dual to those on V. 

We take as structure equations: 

.PPuk = qk + Ltoqw)uk. 

.PWk = -LtyR)d + L’y,)Pk. 

s “‘mk = bk + L”‘(W)mk. 

.StoPbk = -L’“‘(fi)mk + LtoP(w)bk, 

stopf3 = n - gw, w], 

sfOPfl = -[w, Q], 

with 

(26) 

stop = dw + (dv + S> + (Iv + L)(o) - (iv + I)(Q), (27) 

Pk = dVuk E ‘Pi”,, (28) 
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in the intermediate model, and 

stop = dw + dv + 6, 

lyk = (dv - L?P(,))t? = k$/ 

in the Weil model, while 

Ltop = Iv + L 

(29) 

(30) 

(31) 

in any model. 
The null section so of E(M, V) that sends any point of M into the null vector, diffeo- 

morphically maps M into so(M) c E. Then, the Thorn Class T(E) of E is nothing but 
the Poincare dual of so(M) in E [BT82], and the Dirac form on E: 

6(v) dv’ A . . . A dun (32) 

represents the Poincare dual of so(M) in E. This form can be written as a Fourier transform: 

1 

(2x)” s 
dbdtirexpi(b.v+m.p} 

1 
=- 

(2x)” s 
db dm exp i{bkvk + mkp’}. (33) 

From the structure equations (26), we deduce 

b. v + m . P = stop(tir . v). (34) 

However, we can consider a smoother representative, with a gaussian behavior for instance. 
That means that we must insert a term of the form: 

i(b, b)v* (35) 

into (34). Now, we can try to write the new argument as an stop-exact term: 

stop(m v + i(m, b)v,) = b . v + m . W + i(b, b)v* - i(L’“p(.n)ru, ZP)~* (36) 

so that we are led to define 

1 

lJ = (2X)” s 
dbdrir expi(stoP(mv + i(m, b)v,)}. (37) 

Note that U is an element of W(S0 (n)) @ Q*(V). 
In order to prove that U maps into a representative of T(E), let us proceed in the inter- 

mediate model where we write Uint instead of U. Then, since in (37) w E VV(SO(n)) does 
not appear, we immediately conclude that Uint does not explicitly depend on w, that is to 
say: 

VA E so(n), iW(i_)Uint = 03 (38) 

which express the basicity condition within the intermediate model. Now, there remains to 
show that Ui”t is closed with respect to Dint = dw + dv + Iv(o) - iv(Q). Indeed 
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1 
Dint Uint = - (2X)n Di”t s 

dbdm exp(i stoP(m.v + i(m. b)v*)} 

1 
=- 

(275Y s 
db drrr (stop - Dv*)exp(i stoP(u v + i(m, b)v,)], 

where Dv* = S + L(w) - I(a). Hence 

1 
Dint Uint = -- 

(2n)” s 
dbdzrr[Dv* exp(i . ,stoP(m . v + i(m. b)v,)}]. 

Now, from the structure equations (26), we get 

Dv* = (b/q + L’“p(w)mk)& + (-Lt”p(i2)mk + L’“P(w)b+& 
k k 

= ~t”p(CO)ZVk& 
( k 

+ /t,‘“P(w)bk; 
‘ > k 

Ltop(ti)~k& . 
> 

3.5 

(39) 

(40) 

(41) 

(42) 

(43) 

The first term in Dv* corresponds to an so(n)-transformation. Due to the so(n)-invariance 
of the measure db dm, it does not contribute to (41). The last term in (43) vanishes upon 
integration by parts. Then 

DintUint = 0. 

Finally, combining Eqs. (38) and (44), we deduce that 

Vi E So(n), (lw + IV)(h)Ui”t = 0. (45) 

and conclude that Dint is a representative in VV(SO(n)) @ L’*(V) of the Thorn Class of 
E(M, V). The corresponding representative in the Weil model is obtained by setting 

.stop = dw + dv + S, 

‘&I/” = (dv - Lt”p(~))vk E Iy; 

within Eq. (37). 

(46) 

(47) 

Actually, it can be easily shown that Fourier transform (denoted fl commutes with 
equivariant differential operations. More precisely 

F‘[(dw+S+L(w)-I(R))@l=(dvv+dv+Iv(w)--v(Q))F[@l. (48) 

.F [iw(h)@] = iw(h)F [@I ) (49) 

.T[(lw + L)(h)@1 = (LV + Iv)(h)FT[@l (50) 

in the intermediate model. The same holds in the Weil model with suitable differentials. Let 
us point out that this mainly relies on the identity b . v + u . 9 = ?“P(u . v). 

Then, since 4 = (b, b)p + (L’“P(f2)m, m)v* is equivariant, it is straightforward to 
find that its Fourier transform is also equivariant. This simple remark allows to construct 
representatives of equivariant cohomology classes using Fourier transform of functions of 

d. 
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Finally, we can consider a principal SO(n)-bundle P over M. It is well known that 
P x SO(~) V is a vector bundle isomorphic to E, and P x V is called the principal SO(n)- 
bundle associated with E(M, V). Hence, as an n-form on E, any representative of the 
Thorn Class T(E) of E comes from a closed SO(n)-basic n-form on the associated bundle 
P x V of E. In order to produce such a representative of T(E), we use Cartan’s Theorem 
3, that is to say we replace (w, 52) (in the representative U) by (0, O), a connection and its 
curvature on P(M, SO(n)). 

4. Construction of representatives of Thorn class of vector bundles: The 
Berline-Getzler-Vergne strategy [BGV91] 

In this section, we shall use the strategy explained in Section 2 in order to produce 
representatives of T(E). 

To begin with, we are going to turn V into a Riemannian manifold, i.e. a manifold V 
with a metric. The tangent bundle of V, denoted by TV, is obviously isomorphic to V x V. 
The only SO (n)-invariants formed with v and dv are the three scalar products, so that the 
general SO @)-invariant metric on V is: 

ds*(v) = eq(( dv’)* + a(~’ dv’)*), (51) 

where cp and 0 are smooth functions oft = (v, v)” only. The above expression is positive 
definite if and only if 1 + 0 (t)r > 0 for t 2 0. One can assume if convenient that the metric 
is asymptotically flat (i.e. that the curvature vanishes at infinity). 

We can consider the principal GL (n, lR)-bundle associated with TV, i.e. the frame bundle 
R(V) of V. It is made of the points (v, b,) where b, is a frame (i.e. a basis) at v. Coordinates 
for b, are defined as follows. We denoted by (&) the natural basis of T,V defined by 
the canonical coordinates (uk) of V: & = a/auk. Then, the coordinates of 6, are the 
components bh of the decomposition of b, with respect to the natural basis (a& 

bvk = bLi$ (52) 

with bvk the kth frame vector of the frame 6,. The isometry group of (V, ( , )v), namely 
SO(n), acts both on elements of V and on frames, that is to say on R(V). This goes as 
follows. For any 0 E SO(n), 

@k(v) = 4$? (53) 

At the infinitesimal level, if we write @k = 6: + &, we get 

4+(V) = (Sk + q$Ju” = uk + &um = uk + .& (54) 

where ck = q&v” d fi e nes a vector field on V, the so-called fundamental vector field 
associated with the action of cp E so(n): 
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The natural action of @ E SO(n) on T,V is given by the so-called differential of @ at v, 
d,@ : T,V + T@(,,V: 

VX, E T,V, Vf E C”(V) d&)X, (.f) = X,(.f o 0). (56) 

Applying this definition to the frame vectors hvk, one gets 

bj = b:‘@,,@‘(v)) = by@;, (57) 

where &j are the coordinates of the transformed frame at Cp tv). At the infinitesimal level, 
for cp fz so(n), 

tj=b,m(S:,+cp~)=b)+hl’cp:,=b;;+b:”~~=hj+8i. (58) 

Combining Eqs. (54) and (58), we deduce that the fundamental vector held associated with 
the action of cp E so(n) on R(V) reads 

+ $‘d$i. 
4 

(59) 

Now, let P(M, SO(n)) be some principal SO(n)-bundle over a smooth manifold M. 
It is well known that there is a vector bundle over M associated with P for the action of 
SO(n) on V. The group SO(n) acts on the right on P and on the left on V. We first define 
a right-action of SO(n) on P x V by setting 

(p, v)@ = (P. @,4+(v)) (60) 

so that, the fundamental vector field representing the action of cp E so(n) on P x V reads 

where hp is the fundamental vector field representing the action of cp on P. 
Finally, the action of any 40 E so(n) on the GL(n. KY)-principal bundle P x R(V) is given 

by following fundamental vector field: 

h = hp - hR (62) 

with hR defined in Eq. (59). 
In the following, V, R(V) and P are equipped with the following differential operations: 

dv, dR, dp. iv. iR, ip, IV, /R and lp, respectively, exterior differentials, inner products and 
Lie derivatives. 

Now, since we are looking for representatives of equivariant cohomology classes. we can 
mimic the construction made in [STW94] in the case of two-dimensional Gravity. We first 
look for a GL(n, R&connection on P(P x V, GL(n, R)) = P x R(V) invariant under the 
action of SO(n). If we notice that, by construction, the metric g on V is SO(n)-invariant, 
we can consider the Levi-Cevita connection Lcl- associated with g. Due to the SO(n)- 
invariance of g, Lc f is an SO (n)-invariant connection. More precisely, the lift of Lc r into 
a connection 1 -form f on R(V) according to 

r = b-’ (LCr)b + b-‘dRb (63) 
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is invariant under the action of SO(n). The fundamental vector field for the action of so(n) 
was given before, so that 

(iP(h)T); = (b-I);(- %/J”)b~, (64 

where ip(L.) = (ip + iR)(h), and 

Ip(h)T = 0 (65) 

with /p(h) = (lp + /R)(h). 
The next step is to consider the Weil algebra kV(SO(n)) of so(n). The relevant formulae 

were given in Section 2. We recall that the equivariant curvature of r in the intermediate 
model is 

RZt(f, w, 0) = (dw + dp + Ip(w) - iP(Q), r + $ [r, r1 

while the corresponding curvature in the Weil model is obtained as 

Rz(T, 0, L?) = eipCW)Rz(f, w, Sz), 

(66) 

(67) 

which gives 

RZ(T, w, a) = R(T) + ip(w)R(f) + ;ip(W)ip(W)R(r) - ip(L?)C 

The Weil equivariant Euler class is defined by 

(f-33) 

(69) 

which after normalization gives rise to a representative of T(E) in P(M, SO(n)) x V. 
It is now time to use the explicit form of the metric to get a formula for the Thorn 

class. Surprisingly, we shall see there is no choice of metric that allows to recover the 
MathaI-Quillen representative of T(E). From now on, the computations, if painful, are 
straightforward. We use the intermediate model so that dv ui = Pi. As (63) looks formally 
like a change of coordinates in the fiber, we know that its effect on curvature will be a 
simple conjugation which disappears completely on the Thorn class. So we can forget it in 
the computation. From (5 1) we find that the metric is: 

gij = @C&j + OUiUj). (70) 

Our notations need some comment: we start with global coordinates ui on V, so the 
exponent i is not a tensor component but just a label. The metric is expressed with respect 
to this particular coordinate system. However, it is convenient to deal consistently with 
formal lower and upper indices in the Einstein summation convention. So we define ui = 
vi and 6ij = S’j = 8; = 8, = 1 if i = j and 0 else. For instance we use the notation ui 

and 6ij in gij and we write t = vi d. This becomes slightly less formal if we restrict the 
diffeomorphism group of V to linear orthogonal transformations. 
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A simple computation shows that the inverse metric is 

Kij = e-V($J + aJui), (71) 

where 6 is defined by (1 + tS)( 1 + ra) = I. 
First. we need a formula for the connection and curvature. The fact that cp and 0 depend 

only on I leads to many simplifications in the computation. We use dots for derivatives with 
respect to t. 

With the expression of g, we get for the connection: 5 

c$ = (1 + ta)Uk](D - +)Sij + (Cr - D$)U,U,j] + $(?Jis:’ + tJj8f) 

so that the connection matrix is 

(72) 

$! E @“qi, = AI.ljL’iUk’Pk + Bub; + C(V;@ + 6;Uk@k). 

where we have set 

(7.3) 

A = (1 + t6)(ir - Co), B = (1 + t6)(a - C). c =@. (74) 

The curvature matrix is given by 

R; G d+ + rkj A qk. (75) 

A tedious computation leads to 

R’j = gQ; 

where 

Ml1 =&+2c-0, Ml2 = 2c - c2 - cr + (1 + t6)(a - C)tir. (77) 

To get the full equivariant curvature, we need the part involving R. In accordance with our 
convention on indices, we define 52’j G 0,. By definition s2’.j is antisymmetric. According 
to formulae (64) and (66), the part of the equivariant curvature containing R is the covariant 
derivative of L$ uk, the so(n) vector field associated to Q. Consequently 

(--i&-&r); = L?kJ + nf,vmf,J=a. (78) 

The antisymmetry of R leads to further simplifications. The outcome is: 

g’“(R; + 521,vV$ 

=e -‘(l + k?)[Mz,@ + kf22(uin&k’ - uiukfiki)], (79) 

where 

M2i = I + ta, IV22 = c - ff. (80) 

‘Remember that r/j E igk’(i$gI, + ajgi, - alR,,), 
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We note the striking similarity between the two contributions. If we define a 2 x 2 matrix 
N’j by 

(81) 

the equivariant curvature can be written as a trace 

(Rrz)‘j = eO’(l + t6)Tr A4N’j. 

The equivariant Euler class is 

(82) 

ErJ = 2”/*& Pfaff ( Rl”nq)ij (83) 

with the usual definition of the Pfaffian. Note that Jg = e’q/*( 1 + to)“*. 
This is the explicit formula for the universal Thorn class that we were after. It involves 

two arbitrary functions oft, cp and o (with the mild restriction 1 + tu > 0) which may be 
localized at will thus so leaving a fair amount of flexibility. 

The first comment to make is that apparently the above representative, which is of course 
so(n) invariant when so(n) acts on V, 52 and ly at the same time, is not invariant when 
so(n) acts only on V. To state it more simply, the V dependence of the Thorn class is not 
only through t. This is to be contrasted with the Mathai-Quillen representative. 

Let us deal with a special case first. When n = 2, it is easy to see that 

EijNij = 2 
P’ly2 i-2’* 
tP’P2 ti2’* ’ > 

(84) 

so we have some hope to recover the MathaGQuillen formula as a special case. After some 
manipulations one finds 

E,e, = 4F’&‘p2 + 2FS2’*, (85) 

where 

FS 
1 +tc 

(1 + tay/* (86) 

So the Thorn class depends only on one arbitrary function of t, namely F, which can 
easily be adjusted to recover the Matha’i-Quillen representative. The correct choice is F = 

-(1/(4n)) ew(-t/4). 
When n > 2 the situation is more complicated. We shall use a trick to see how much the 

symmetry of the so(n) action on V is broken. 
The first observation is that under a similarity, the Pfaffian has a simple behavior: if A 

is a square antisymmetric matrix and S an arbitrary square matrix of the same size with 
transpose S’, S’ AS is again antisymmetric and Pfaff S’ AS = Det S Pfaff A. The square of 
this equation just follows from the multiplicative property of the determinant, and the sign 
is fixed by the case when S is the identity matrix. So if we can find a matrix S’j (independent 
of w and 1;2) such that St RzyS simplifies, we shall end with a simpler formula for the Thorn 
class. 
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Define a symmetric matrix S(D) of parameter D by 

S(D); = 6; + Dv’I+. (87) 

This matrix is easily diagonalized: the vectors orthogonal to ui are left invariant and 11’ is 
multiplied by 1 + t D. So 

DetS(D)=l+tD (88) 

and 

S(D)S(E) = S(D + E + tDE). (89) 

Moreover, if A’.j is any antisymmetric matrix, 

(S(D)AS(D))jJ = A’j + D(v’ukAk~j - vJvkAki). (90) 

We apply this identity to the four antisymmetric objects building the 2 x 2 matrix N” to 

get 

S(D)NS(D) = S(D)N, (91) 

where s(D) is the 2 x 2 matrix 

(:, 1 :tD)’ 
(92) 

In Eq. (91), the left-hand side involves a product of II x n matrices, and the 2 x 2 indices 
are spectators whereas on the right-hand side the opposite occurs. 

So we can write 

S(D)RrzqS(D) = eCV(l + r6)Tr M(D)N 

with M(D) = MS(D), and the Thorn class is 

(93) 

Eeq = (1 +IC)(‘-~)‘~(~ +rD)-‘Pfaff(TrM(D)N). 1nt 

We can choose D to simplify the expression of Ez. 
First we take 

(94) 

D= DI. where M(D1) = 

This makes it easy to compute the term in Ek: that does not involve Q. The outcome is 

E;; = n!(l + ta) (I-n)/2 (* +r!&> M;j2 ly ’ .9” + terms involving Q. (95) 

One can check that this is compatible with (85) for n = 2 
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Second, we take 

D = D2, 

This makes it easy to compute the term in EFi that does not involve p. The outcome is 

Eeq = 2”“( 1 + ra) 1nt 
(l-n)/+ +&=)M;{2 Pfaff 52 + terms involving p, (96) 

a result which is again compatible with (85) for n = 2. 
Those two terms in ErJ automatically depend only on t. On the other hand, the other 

terms are not scalars for the so(n) action on V. To see this we keep D = D2, set A’j = 

M1,‘&‘bJ’J + M2,Q’j and B’j = u’(u~@~)G~ - uj(~kp~)ly~. Using the fact that xkpk 
squares to 0 we get 

E;; = (1 + to)-/2 

x (2n/2(i+t$)PfaffA-n/2~ Ei,j ,_,, i,,j,,B’ljlA’Ki2 . ..A’“& . 

(97) 

As R and r& are independent families of indeterminates, the matrix elements of A’j are 
independent of each other (except for antisymmetry) and of the matrix elements of B’j. So 
in the expansion of 

E. ___. B’l.il A’2.k . . A’“&? 
‘IJI ‘,iJ,z (98) 

no compensation can occur between A-factors and B-factors or between different B-factors. 
Moreover, B-factors contain the full non-so(n) invariant part of the V dependence of the 
Thorn class. So we have the following three possibilities. Either Det M is 0, or B’j is invariant 
for the action of so(n) on V, or the representative of the Thorn class is not invariant for the 
action of so(n) on V. The first term of the alternative depends on our choice of cp and D. 
The second is easily checked to occur if and only if n = 2, a case we have already treated. 

So finally, we have shown that if n > 2 the representative of the Thorn class is invariant 
for the sn(n) action on V if and only if Det M = 0. 

We shall now see that despite the fact that apparently our representative of the Thorn class 
depends on two arbitrary functions, the single condition Det M = 0 fixes it completely. This 
can be seen as a manifestation of the topological character of the Thorn class. We shall also 
see that the representative we end up with is not the MathaY-Quillen representative. 

From now on, we set Det M = 0. Explicit computation shows that this equation has a 
first integral. Namely Det M = 0 is equivalent to 

(1 +tcj3$ (1 +crc)’ + ( 1 1 -- 
t(1 +tC)2 > 

= 0. 
t 

The term in parenthesis can be written as 

C2t+2C-a (1 +ta) - (1 +t@ 

(1 + tC)’ 
or 

t(1 +r@ . (100) 
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Now, we distinguish two cases. 

43 

Suppose first that for some value oft the function 1 + tC vanishes together with its first 
derivative. Then 

( 101) 

As a byproduct, Mzt +tM22 vanishes, and the equivariant Euler class vanishes. So clearly. 
the function 1 + tC cannot vanish everywhere if we are to find a non-trivial class. Anyway. 
the vanishing of 1 + rC would mean that e p = to/t for some constant to leading to a metric 
singular at the origin. It is likely that in this case. a careful computation with distributions 
would give a curvature concentrated at the origin, but we are not interested in this anyway. 

On the open intervals where 1 + tC # 0 the second factor of (99) has to vanish. We get 

D 1 1 I 

(I +tC)? 
+p--=- 

t(1 + tC)’ t to 
(102) 

for some constant to. Using (100). one obtains 

I +tc 
,$fp -Cl + to (I + (to + t)C)(to + t)Y’ 

(1 + tC)(to + t) -(l + (to + rK1 > 
(10.3) 

t0 

leading to a remarkable simplification of (97): 

(104) 

Now, as M~I = 1 + to. which has to remain strictly positive. I + tC cannot vanish at the 
boundary of an open interval where it is non-zero. This means that 1 + Cr vanishes nowhere. 
and that formula (104) is valid everywhere. This is our final formula for the equivariant 
Euler class if we decide to trade flexibility (arbitrary choice of cp and 0) for simplicity 
(so(n) invariance on V, leading to a simple Pfaffian). The Matha’i-Quillen representative 
never shows up for n > 2. 

Some comments are in order. Usually the Thorn class is defined by using function with 
compact support (differential topology) or rapid decrease at infinity (quantum field theory) 
on V. The MathaGQuillen representative belongs to this second category. With the general 
formula, the freedom on cp and 0 allows us to impose any behavior at infinity. 6 On the other 
hand our rigid proposal for the Thorn class does not decrease fast at infinity. Despite the fact 
that this may be inconvenient in certain applications, we would like to point that it makes 
sense nevertheless. To define the Thorn class, the crucial point is that the cohomology of 
V with coefficients having compact support or rapid decrease at infinity is concentrated in 
the dimension of V and one dimensional there. It seems clear that a cohomology of V can 
be build such as to retain this property and accept our rigid representative as a well-defined 
cohomology class. For instance k-forms on V such that for any non-negative integer I the 
partial derivatives of order 1 of the coefficients exist and are 0(t-(k+‘+‘)/2) at infinity. 
endowed with the usual exterior derivative, should work. 

’ In fact to localize the Thorn class on arbitrary spherical shells if this proves useful. 



44 M. Bauec E Thuillier/Journal of Geometry and Physics 25 (1998) 2945 

In particular, we can normalize things in such a way that the integral on V of the term 
independent of 0 is 1, as is usual for the Thorn class. A simple calculation gives for the 
normalized Thorn class 

Tv = & ($)“‘Pfaff(&ui*j _ fiij)_ (105) 

Playing with the value of to allows to localize around the zero section. This formula already 
appears in [HL93] as a specialization of another formula for the Thorn class. 

5. Conclusion 

In these notes, we have obtained formulae for the universal Thorn class of a vector bundle. 
A special choice leads to a rigid representative involving Cauchy-type kernels. It would be 
very interesting to know whether the MathaY-Quillen representative, with its Gaussian-type 
kernel, is also a rigid member of some natural family of representatives. 
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